PR. 2 Given the circuit, determine whether the dependent voltage source is supplying or absorbing power;then find that power.

(a) $\mathrm{P}_{\text {absorbed }}=58.6 \mathrm{~W}$
(b) $\mathrm{P}_{\text {absorbed }}=40 \mathrm{~W}$
(c) $\mathrm{P}_{\text {delivered }}=58.6 \mathrm{~W}$
(d) $\mathrm{P}_{\text {delivered }}=450 \mathrm{~W}$
\rightarrow (e)none of the above
54.81 kW

PR. 3 A resistor draws a current $I=8$ Sinwt at a voltage $\mathrm{V}=200$ Sinwt. Caiculate the average power dissipated in the resistor.
(a) 400 W
\rightarrow (b) 800 W
(c) 1600 W
(d) OW
(e)none of the above

PR. 4 Find V_{S} and I_{S} in the following circuit:
(a) $I_{s}=10 \mathrm{~A}$
(b) $I_{s}=30 \mathrm{~A}$
(c) $V_{\mathrm{S}}=60 \mathrm{~V}$
(d) $\mathrm{I}_{\mathrm{S}}=20 \mathrm{~V}$
\rightarrow (e) none of the above $120 \mathrm{~V}, 20 \mathrm{~A}$

PR. 5 Given a 2Ω resistor connected between terminals a an b and given that the voltage is shown in the graph below:

Find the power delivered by the resistor for $0<t<2 \mathrm{~min}$.
(a) $9 t^{2} / 8$
(b) $-9 t^{2} / 8$
(c) $-3 t^{2} / 960$
(d) $3 \mathrm{t}^{2} / 960$
\rightarrow (e)none of the above $t^{2 / 3200 ~ W, t ~ i s ~ i n ~ s}$

PR. 6 For the same given of problem 5, find the energy in joules converted into heat by the resistor for $2<\mathrm{t}<4 \mathrm{~min}$.
\rightarrow (a) 540
(b) 180
(c) 1080
(d) 90
(e)none of the above

PR. 7 A 110 light bulb takes 0.9A and operates $12 \mathrm{~h} / \mathrm{day}$. At the rate of $7 \mathrm{cents} / \mathrm{Kwh}$, find the cost to operate the bulb for 30 days.
(a) $5 \$$
\rightarrow (b) $2.5 \$$ approx
(c) $2 \$$
(d) 252ϕ
(e)none of the above

Figure 1

1. In the circuit shown in figure 1 , calculate the total power delivered by the two sources.
a) 88 W
b) 72 W
c) 98 W
d) 110 W

Hint: redraw as a
e) None of the above

Figure 2
4. In the circuit shown in figure 2, determine I so that no current flows in R_{L}.
a) 3 mA
b) 0 mA
c) 2 mA
d) -1 mA
e) None of the above
 the resistance Ry that should be connected between terminals ab for maxinum transfer.
a) 100 KO
b) $125 / \mathrm{K} \Omega$
c) $1 \mathrm{~K} \Omega$
d) 360Ω
e) None of the above
c) $22.0 \mathrm{~K} \Omega$
d) 760Ω
e) None of the above

6. In the cireuit shown in figure 4, determine the maxinum power dissipation in the 5Ω resisto.
a) 300 W
b) 150 W
c) 45 W
d) 500 W
e) None of the above

Figure 5

Figure 6

Figure 7
2. Determine v_{x} in the circuit of figure 7 .
7. In the circuit shown in figure 5, determine \longrightarrow a) $\mathrm{v}_{\mathrm{x}}=\mathbf{2 0 V}$
determine $\mathrm{R}_{\mathrm{o}}=\mathrm{V} / \mathrm{I}$, if $\mathrm{V}_{\mathrm{gd}}=0$. determine $\mathrm{R}_{\mathrm{o}}=\mathrm{V} / \mathrm{I}$, if $\mathrm{V}_{\mathrm{gd}}=0$.
c) $\mathrm{v}_{\mathrm{x}}=-20 \mathrm{~V}$
a) $R_{0}=R_{D S} \| R_{G}$
d) $\mathrm{v}_{\mathrm{x}}=15 \mathrm{~V}$
b) $R_{o}=R_{D S}$
e) None of the above
$\longrightarrow \mathrm{c}) \mathrm{R}_{\mathrm{o}}=\mathrm{R}_{\mathrm{DS}} \|\left(1 / \mathrm{g}_{\mathrm{m}}\right)$
d) $R_{o}=R_{S}\left\|R_{G}\right\| R_{D S}$
e) None of the above
8. In the circuit shown in Figure 6, find v_{1} and the voltage v across both sources if i_{s} is given ते 12 A .
a) $\mathrm{v}_{1}=30 \mathrm{~V}$ and $\mathrm{v}=22.5 \mathrm{~V}$
b) $\mathrm{v}_{1}=0.6 \mathrm{~V}$ and $\mathrm{v}=2.25 \mathrm{~V}$
\longrightarrow c) $\mathrm{v}_{1}=30 \mathrm{~V}$ and $\mathrm{v}=225 \mathrm{~V}$
d) $\mathrm{v}_{1}=6 \mathrm{~V}$ and $\mathrm{v}=225 \mathrm{~V}$

Figure 9
Hint: transform current sources to voltage sources
11. In the circuit of figure 9 find V_{A}, V_{B} and V_{C}. Note that the resistors are labeled with their respective conductances.

$$
\begin{array}{|l|}
\hline V_{A}=12 \mathrm{~V}, V_{B}=10 \mathrm{~V}, \\
V_{C}=22 \mathrm{~V}
\end{array}
$$

12. Find the Thevenn eqqivalent of the circuit shown in figure 10 .
a) $\mathrm{V}_{\text {th }}=10 \mathrm{~V}$ and $\mathrm{R}_{\text {th }}=1 \mathrm{~K}$
b) $\mathrm{V}_{\text {th }}=0 \mathrm{y}$ and $\mathrm{R}_{\text {th }}=0.1 \mathrm{~K}$
c) $\mathrm{V}_{\text {th }}=10 \mathrm{~V}$ and $\mathrm{R}_{\text {th }}=2 \mathrm{~K}$
d) $\mathrm{V}_{\text {t }}=1 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{th}}=1 \mathrm{~K}$
e) None of the above

Figure 1
2. Find Geq for the network of figure 1. (round off your answer to 2 decimals).
a) 5 mhos
b) 7 mhos
c) 6 mhos
d) 4 mhos
e) None of the above

Figure 3

7. Consider the following circuit:

The equivalent resistance of the above circuit is:

C. 6.2Ω
D. 4Ω
E. None of the above
8. Consider the following circuit:

Assume switches S 1 and S 2 are both open, the current in the 15Ω resistor is:
A. 0.34 A

B.
.86 A

D. 0 A
E. None of the above
9. In problem 8, assume switches S 1 and S 2 are both closed, the power generated by the 12 V battery is:

D 4.8 W
B. -8.76 W
C. 17.52 W
D. 8.76 W
E. None of the above.

cng. arch Libry
11. Find the current I in the circuit shown below:

A. $24 / 14 \mathrm{~A}$
\times B
-0.857 A
C. -3 A
D. 4 A
E. None of the above.
13. Find the Voltage V in the circuit shown below.

2. Notecircuit of Figure 1, the Thevenin resistance as seen

3. In the circuit of Figure 2, the equivalent resistance seen across the terminals ab is:

a.	72
b.	7.5Ω
D	68
	6.50
e.	None

Refer to figures below

e. None of the above
4. The current I, across the 6 V source in Figure 3 is:

a.	1.5 A
c.	4.5 A
d.	3 A
e.	None

e. None of the above
5. Find k in the circuit shown in Figure 4 such that the power dissipated in the $2-\Omega$ resistor is 50%.
$\rightarrow \underset{\substack{\text { c. } \\ \text { d. } \\ \text { a. }}}{\text { a. }} \begin{aligned} & \text { 2 } \\ & 4\end{aligned}$
e. None of the above
9. Find the resistance R in the circuit of Figure 7 such that the power supplied by the $100-\mathrm{V}$ source to the network is the same as the power supplied by the $5-\mathrm{A}$ source.
$\rightarrow 208$
c. 102
d. 40Ω
e. None of the above
10. Th the circuit of Figure 8, the Thevenin equivatent resistance across terminals $a-b$, is:

11. The curtent entering a circuit is shown in Figure 9. Determine the amount of charge that enters the circuit as a result of the current pulse.
\rightarrow a. 20 mC
b. $\quad 40 \mathrm{mC}$
c. 80 mC
d. 60 mC
e. None of the above
12. Fout 60-W. 110-V light bulos are to be operated from a $230-$ V source (see Figure 10). Determine the value of the resistance, R, connected in series with the line so that the voltage across the bulbs does not exceed $110-\mathrm{v}$
$\begin{array}{cl}\text { c. } & 50 \\ \text { d. } & 120 \mathrm{D} \\ \text { d. } & 60 \Omega\end{array}$
d. 60Ω
e. None of the above

Eng. \& Arch. Lotory

13. The power absorbed by the $4-\Omega$ resistance of figure 11 is
$\rightarrow 100 \mathrm{~F}$
50W
c. $\quad 75 \mathrm{~W}$
d. 90W
e. None of the above.
14. In the circuit of Figure 12 , the power delivered by the $10-1$
V source is: $\begin{array}{cc}\text { a. } & 20 \mathrm{~W} \\ \text { b. } & -40 \mathrm{~W} \\ \gg \text { d. } & 40 \mathrm{w} \\ 60 \mathrm{~F}\end{array}$
d. 60 w
e. None of the above.

Eng, Arech Litorary

Fig. 12

2 - In the circuit shown below, delemine the equivalent resistance Rac.
a) 10 R
b) 18 R
c) 2 R

3 - If the intercomection of different soures in the foilowing cirosit is vaid, find the total absorbed and delivered power in this circuit.
a) The intercomection is not valid
b) P (absorbed) is $2400 \mathrm{~W}, \mathrm{P}$ (delivered) is 2400 W
c) P (absorbed) is $450 \mathrm{~W}, \mathrm{P}$ (delivered) is 450 W
d) $\mathrm{P}($ absorbed $)$ is $600 \mathrm{~W}, \mathrm{P}($ delivered $)$ is 600 W
e) none of the above

5-Given the nework below, find vo. (The resishance are given in KS)

a) $36^{*} 10^{-3} \mathrm{~V}$, b) 41 V .
c) 36 V ,
e) none of the above

7- Find Vo in the following circuit (The resistance are given in Chin)
a) $\mathrm{VO}=5 \mathrm{~V}$
b) $V_{0}=-200 \mathrm{~V}$
c) $V_{0}=-20 \mathrm{~V}$
d) $\mathrm{V}_{0}=-25 \mathrm{~V}$
e) none of the above

1. Determine $R_{\text {in }}$ in the figure, given that $R=1 \mathrm{k} \Omega, m=2$, and $k=2$.
\rightarrow A. Infinite
B. Zero Ω
C. $1 \mathrm{k} \Omega$
D. $2 \mathrm{k} \Omega$
E. None of the above

2. Considering the circuit below, find the current lo flowing through the resistor 300Ω.

\Rightarrow a) 0.667 A
b) 1.000 A
c) 1.333 A
d) 2.000 A
e) None of the above
3. Find the equivalent resistance between the terminals (a, b).

(a) 4.50Ω
b) 2.25Ω
c) 12.5Ω
d) 8.0Ω
e) none of the above
4. In the circuit below, find the value of the current $\mathbf{I x}$ flowing between node a and node b . $(\mathrm{Vs}=10 \mathrm{~V})$

(a) +50 mA
b) +100 mA
c) -30 A
d) +30 A
e) None of the above
5. For the circuit shown below determine the power supplied by the source.

a. $\quad 63.1 \mathrm{~W}$
b. 36.3 W
\rightarrow (d.) 21.6 W
e. None of the above

7\%
3. Determine $V_{a b}$, given that all current sources are 1 A and all resistances are 5Ω.
A. 5 V
B. 10 V
C. 15 V
D. 20 V
E. Not a valid connection

8\%

1. Determine $R_{e q}$.
A. 5Ω
B. 10Ω
C. 0
\rightarrow D. Infinite
E. None of the above

Solution: If a source v_{T} is applied, the source current is $i_{T}=i_{x}-i_{x}=0$. The resistance seen by the source $R_{e q}$ is therefore infinite.
2. Determine I_{x} in the circuit shown.
A. 2 A
B. 4 A
C. -2 A
D. -4 A
E. None of the above

Solution: KCL at the upper node gives a current of $4 I_{x}$ in the 2Ω resistor; $2 I_{s}=10 I_{x}$; from KVL around the right mesh: $10 I_{x}=8 I_{x}$ +4 , so that $I_{x}=2 \mathrm{~A}$.

Problem 1

Find R_{ab}.
A) 12 ohms
B) 7.50 ohms
C) 10 ohms
D) 15 ohms
E) None of the above

Problem 3

Find V_{0} in the 30 Ohm resistor in the circuit shown below
A) $V_{0}=6 \mathrm{~V}$
B) $V_{0}=66 \mathrm{~V}$
C) $V_{0}=72 \mathrm{~V}$
D) $V_{0}=78 \mathrm{~V}$
E) None of the above

Problem 4

In the circuit shown, find the voltage denoted by Vs1
A) 300 V
B) 150 V
C). $-15 \tilde{0} \mathrm{~V}$
D) 75 V
E) None of the above

Problem 5

In the circuit shown above, find the value of the load resistance R_{L} in terms of R such that Vo is 50 V .
A) $R / 3$
B) $3 R$
C) R
D) $2 R$
E) None of the above

1. The current in a $1 \mu \mathrm{~F}$ capacitor is shown in the figure as a function of time. The total energy stored in $\mu \mathrm{J}$ is:
A. 40
B. 100

C. 200
D. 50
E. 25

Solution: q at 4 ms is $\frac{10 \times 4}{2}=20 \mu \mathrm{C}$. The energy in $\mu \mathrm{J}$ is $W=\frac{(20)^{2}}{2 C}=\frac{200}{C}$, where C is in $\mu \mathrm{F}$.
2. If $V_{S R C}=10 \mathrm{~V}$, determine R_{x} so that $I_{x}=0$.
A. 5Ω
B. 1.25Ω
C. 2.5Ω
D. 1Ω
E. 1.67Ω

Solution: When $I_{x}=0, \frac{R_{x}}{R_{x}+5} V_{S R C}=5$, or $R_{x}=\frac{25}{V_{S R C}-5} \Omega$.
3. If $R=10 \Omega$, determine the ratio ρ / α so that $I_{1}=I_{2}$.
A. 4Ω
B. 10Ω
C. 6Ω
D. 5Ω
E. 8Ω

Solution: $I_{1}=\frac{6-\rho I_{2}}{R}, I_{2}=\frac{6-\alpha R I_{1}}{R}$, or

$$
\frac{6-\rho I_{1}}{R}=\frac{6-\alpha R I_{1}}{R} \text {, which gives } \rho / \alpha=R \text {. }
$$

4. In the figure shown, the 24 V source having a source resistance of 1Ω is replaced by the equivalent current source, the load resistance R_{L} being the same. If $R_{L}=5 \Omega$, the ratio of the power delivered by the ideal current source to the power delivered by the ideal 24 V source is:
A. 5
B. 11

C. 7
D. 14
E. 9

Solution: The power delivered by the ideal voltage source is $24 \times \frac{24}{R_{L}+1}$. The equivalent current source is an ideal current source of 24 A in parallel with 1Ω. The power delivered by the current source is $24 \times 24 \frac{R_{L} \times 1}{R_{L}+1}$. The ratio of the powers is numerically equal to R_{L}.
5. Determine V_{O} in the circuit shown if $R=1 \Omega$
A. 18 V
B. 12 V
C. 30 V
D. 6 V
E. 24 V

Solution: The current through R is 6 A , so that $V_{O}=6 R$.

6. Given the source connections shown.

Determine the actual power delivered or absorbed by each source.
Solution: $I_{X}=0.8 \times 20=16 \mathrm{~A}$. Current in 20 V source is 6 A in the direction of a voltage rise. Voltage across dependent voltage source is $0.5 \times 16=8 \mathrm{~V}$. Voltage across

dependent current source is $20-8=12 \mathrm{~V}$. It follows that:
Power delivered by 20 V source is $20 \times 6=120 \mathrm{~W}$
Power delivered by 10 A source is $20 \times 10=200 \mathrm{~W}$
Power absorbed by dependent current source is $12 \times 16=192 \mathrm{~W}$
Power absorbed by dependent voltage source is $8 \times 16=128 \mathrm{~W}$
7. Determine $V_{S R C}, I_{S R C}$, and the voltages across the four resistors in the circuit shown. (Four grade points for each answer plus 1 bonus grade).

Solution: Going CCW around the upper mesh:
$4+12 I_{1}-8 I_{2}=0$
Going CW around the lower mesh:
$4-6\left(I_{1}+1.5\right)+22\left(I_{2}-\right.$
1.5) $=0$

The two equations reduce to:
$3 I_{1}-2 I_{2}=-1$
$-3 I_{1}+11 I_{2}=19$

This gives: $I_{1}=1 \mathrm{~A} ; I_{2}=2 \mathrm{~A}$. Hence,
Voltage across 12Ω resistor: 12 V
Voltage across 6Ω resistor: 15 V
Voltage across 8Ω resistor: 16 V
Voltage across 22Ω resistor: 11 V
$V_{S R C}=27 \mathrm{~V}$
$I_{S R C}=3 \mathrm{~A}$.

1. Determine the power dissipated in the circuit, assuming $/=1 \mathrm{~A}$.

Solution: The $1 \Omega \mathrm{Y}$ is paralleled with a $3 \Omega \Delta$, so that it effectively becomes a $0.5 \Omega \mathrm{Y}$, and the circuit reduces to that shown. The resistance seen by the current source is $1 \| 1+2.5=3 \Omega$, so that the power dissipated in the circuit is $P=$ $3 I^{2} \mathrm{~W}$.

2. Determine the power delivered by the 3 V source, assuming $\rho=2$ V/A.
Solution: The upper node is at 5 V with respect to the lowest node, the middle node is at 3 V . hence, $I_{x}=0.5 \mathrm{~A}$ and the current in the 6Ω resistor is also 0.5 A. The current supplied by the 3 V source is $(3-0.5 \rho) / 2$ and the power delivered by the source is $P=1.5(3-0.5 \rho)=4.5-0.75 \rho$ W.
6. Determine the power absorbed or delivered by the dependent source assuming $R=1 \Omega$.

Solution: The current in the 2Ω resistor is $2 I_{x}$ flowing downwards. From KVL in the mesh on the left, $10=4 I_{x}+2$, or $I_{x}=2 \mathrm{~A}$. The voltage rise V_{x} across the dependent source is given by: $V_{x}-R I_{x}=5$, or $V_{x}=2 R$

+5 ; The power P delivered by the source is $P=2(2 \times R+5)$.
16. Determine V_{0}.

Solution: The $2 V_{x}$ source is replaced by a 10 A source. The current in the 2Ω resistor is I_{x}. The current in the dependent source is 5 $2 I_{x}$, so that the current in the 1Ω resistor is $15-I_{x}$. From KVL around the mesh abcd, $2 I_{x}$ $+15-I_{x}=4 I_{x}$, which gives $I_{x}=5 \mathrm{~A}$. It follows that $V_{0}=15-I_{x}=10 \mathrm{~V}$.

Problem 1

Find the equivalent resistance between B and E .

A) 15.11Ω
B) 16Ω
C) 8.33Ω
D) 13.61Ω
E) None of the above

Problem 2

Find V_{0}.

A) 12 V
B) 7.5 V
C) -12 V
D) -7.5 V
E) None of the above

