<u>PR.2</u> Given the circuit, determine whether the dependent voltage source is supplying or absorbing power; then find that power.

PR.5 Given a 2Ω resistor connected between terminals a an b and given that the voltage is shown in the graph below:

Find the power delivered by the resistor for 0 < t < 2min.

(a)9t²/8 (b)-9t²/8 (c)-3t²/960 (d)3t²/960 \rightarrow (e)none of the above $f^{2}/3200 \text{ W}$, *t* is in s

- **PR.6** For the same given of problem 5, find the energy in joules converted into heat by the resistor for 2<t<4min.
 - → (a)540 (b)180 (c)1080 (d)90 (e)none of the above
- PR.7 A 110 light bulb takes 0.9A and operates 12h/day. At the rate of 7cents/Kwh, find the cost to operate the bulb for 30 days.

```
(a)5$ \rightarrow (b)2.5$ approx (c)2$
(d)252¢ (e)none of the above
```


the total power delivered by the two sources.

2. A 1 Ω resistor is connected in parallel with a d'Arsonval movement having a full scale deflection of 1 mA. If a 40 mA current produces a deflection that is 80% of full scale, determine the resistance of the d'Arsonval movement. a) 58 Ω b) 49 Ω

b) 49 Ω
c) 37 Ω
d) 76 Ω

e) None of the above

<u>4.</u> If the circuit shown in figure 2, determine I so that no current flows in R_L .

- a) 3mA
- b) 0mA
- c) 2mA
- →d) -1mA
- e) None of the above

<u>3</u>. A 1 cm cube of material has a resistance of 2.5K Ω measured between opposite faces. Calculate the resistance of a rectangular block of this material that is 50 cm long and of 10 cm² cross-sectional area.

a) 10.8K Ω

c) 22.0K Ω

- d) 760Ω
- e) None of the above

5 In the circuit shown in figure 3, determine the resistance R_1 that should be connected between terminals ab for maximum transfer.

- a) 100KΩ
- b) 125KΩ
- c) 1KΩ
- d) 360Ω
- e) None of the above

Hint: transform current sources to voltage sources

11. In the circuit of figure 9 find V_A , V_B and V_C. Note that the resistors are labeled with their respective conductances.

$V_A = 12 \text{ V},$	$V_B = 10 \text{ V},$
$V_{C} = 22 \text{ V}$	

12. Find the Thevenin equivalent of the circuit shown in figure 10.

- a) $V_{th} = 10V$ and $R_{th} = 1K$ b) $V_{th} = 0V$ and $R_{th} = 0.1K$ c) $V_{th} = 10V$ and $R_{th} = 2K$ d) $V_{th} = 1V$ and $R_{th} = 1K$

- e) None of the above

- 2. Find Geq for the network of figure 1. (round off your answer to 2 decimals).
- 5 mhos a)
- 7 mhos hl
 - 6 mhos
- 4 mhos d)

-c)

None of the above e)

7. Consider the following circuit:

The equivalent resistance of the above circuit is:

A. 11
$$\Omega$$

B 8 Ω
C. 6.2 Ω
D. 4 Ω
E. None of the above

Consider the following circuit:

Assume switches S1 and S2 are both open, the current in the 15 Ω resistor is:

In problem 8, assume switches S1 and S2 are both closed, the power generated by the 12V battery is:

E. None of the above.

E. None of the above.

13. Find the Voltage V in the circuit shown below.

9. Find the resistance R in the circuit of Figure 7 such that the power supplied by the 100-V source to the network is the same as the power supplied by the 5-A source. 20Ω a. 300 Б. с. 100 d. 40Ω None of the above e. 10. In the circuit of Figure 8, the Thevenin equivalent resistance, across terminals a-b, is: 200 a. 5Ω ь. C: -200 10Ω d. е. None of the above 11. The current entering a circuit is shown in Figure 9. Determine the amount of charge that enters the circuit as a result of the current pulse. 20mC (a.) 40mC b. 80mC с. 60mC d. None of the above е.

- 12. Four 60-W. 110-V light bulbs are to be operated from a 230-V source (see Figure 10). Determine the value of the resistance, R, connected in series with the line so that the voltage across the bulbs does not exceed 110-V.
- a. 20 550 c. 1200 d. 600 e. None of the above Eng. & Arch. Library
- 13. The power absorbed by the 4-Q resistance of Figure 11 is:
 - - e. None of the above.
- In the circuit of Figure 12, the power delivered by the 10-V source is:

3 - If the interconnection of different sources in the following circuit is valid, find the total absorbed and delivered power in this circuit.

- a) The interconnection is not valid
- b) P(absorbed) is 2400 W, P(delivered) is 2400 W
 c) P(absorbed) is 450 W, P(delivered) is 450 W
- d) P(absorbed) is 600 W, P(delivered) is 600 W e) none of the above

5 - Given the network below, find Vo. (The resistance are given in $K\Omega$)

 Considering the circuit below, find the current to flowing through the resistor 300Ω.

10. For the circuit shown below determine the power supplied by the source.

7% 3. Determine V_{ab}, given that all current sources are 1 A and all resistances are 5 Ω.

A. 5 V B. 10 V C. 15 V D. 20 V ➡ E. Not a valid connection

1. Determine R_{eq} . A. 5 Ω

8%

A. 5Ω B. 10Ω C. 0 D Infinite

E. None of the above

Solution: If a source v_T is applied, the source current is $i_T = i_x - i_x = 0$. The resistance seen by the source R_{eq} is therefore infinite.

 $1l_x$

 $R_{eq} \rightarrow$

8%

2. Determine I_x in the circuit shown.

A. 2A B. 4A C. -2A D. -4A

E. None of the above

Solution: KCL at the upper node gives a current of $4I_x$ in the 2 Ω resistor; $2I_s = 10I_x$; from KVL around the right mesh: $10I_x = 8I_x + 4$, so that $I_x = 2$ A.

Problem 3

Find V₀ in the 30 Ohm resistor in the circuit shown below

- A) $V_0 = 6 V$ B) $V_0 = 66 V$ C) $V_0 = 72 V$
- D) $V_0 = 78 V$
- E) None of the above

Problem 4

In the circuit shown, find the voltage denoted by Vs1

A) 300 V B) 150 V C) -150 V D) 75 V E) None of the above

Problem 5

In the circuit shown above, find the value of the load resistance R_L in terms of R such that Vo is 50 V.

- A) R/3
- B) 3R
- →C) R
 - D) 2R
 - E) None of the above

1. The current in a 1 μ F capacitor is shown in the figure as a function of time. The total energy stored in μ J is: A. 40 B. 100 C. 200 D. 50 E. 25 Solution: a t 4 ms is $\frac{10 \times 4}{20} = 20 \ \mu$ C. The energy is μ big 10($\frac{(20)^2}{200} = \frac{200}{200}$ where C is

Solution: *q* at 4 ms is $\frac{10 \times 4}{2} = 20 \ \mu$ C. The energy in μ J is $W = \frac{(20)^2}{2C} = \frac{200}{C}$, where C is in μ F.

2. If
$$V_{SRC} = 10$$
 V, determine R_x so that $I_x = 0$.

- A. 5 ΩB. 1.25 Ω
- C. 2.5 Ω
- D. 1Ω
- E. 1.67 Ω

Solution: When $I_x = 0$, $\frac{R_x}{R_x + 5}V_{SRC} = 5$, or

$$R_x = \frac{25}{V_{SRC} - 5} \ \Omega.$$

3. If $R = 10 \Omega$, determine the ratio ρ/α so that $l_1 = l_2$.

- Α. 4 Ω
- B. 10Ω
- **C**. 6 Ω
- D. 5Ω
- E. 8Ω

Solution: $I_1 = \frac{6 - \rho I_2}{R}$, $I_2 = \frac{6 - \alpha R I_1}{R}$, or $\frac{6 - \rho I_1}{R} = \frac{6 - \alpha R I_1}{R}$, which gives $\rho / \alpha = R$.

- 4. In the figure shown, the 24 V source having a source resistance of 1 Ω is replaced by the equivalent current source, the load resistance R_{l} being the same. If $R_L = 5 \Omega$, the ratio of the power delivered by the ideal current source to the power delivered by the ideal 24 V source is:
 - A. 5
 - B. 11
 - C. 7
 - D. 14
 - E. 9

1Ω 24 V

Solution: The power delivered by the ideal voltage source is $24 \times \frac{24}{R_{L}+1}$. The equivalent current source is an ideal current source of 24 A in parallel with 1 Ω . The power delivered by the current source is $24 \times 24 \frac{R_L \times 1}{R_I + 1}$. The ratio of the powers is

numerically equal to R_L .

5. Determine V_0 in the circuit shown if $R = 1 \Omega$

- A. 18 V
- B. 12 V
- C. 30 V
- D. 6 V
- E. 24 V

Solution: The current through *R* is 6 A, so that $V_0 = 6R.$

- 6. Given the source connections shown. Determine the actual power delivered or absorbed by each source.
- **Solution:** $I_X = 0.8 \times 20 = 16$ A. Current in 20 V source is 6 A in the direction of a voltage rise. Voltage across dependent voltage source is $0.5 \times 16 = 8$ V. Voltage across

dependent current source is 20 - 8 = 12 V. It follows that: Power delivered by 20 V source is $20 \times 6 = 120$ W Power delivered by 10 A source is $20 \times 10 = 200$ W Power absorbed by dependent current source is $12 \times 16 = 192$ W Power absorbed by dependent voltage source is $8 \times 16 = 128$ W

Voltage across 22 Ω resistor: 11 V

$$V_{SRC} = 27 \text{ V}$$

 $I_{SRC} = 3 \text{ A}.$

 Determine the power dissipated in the circuit, assuming *I* = 1 A.

Solution: The 1 Ω Y is paralleled with a 3 Ω Δ , so that it effectively becomes a 0.5 Ω Y, and the circuit reduces to that shown. The resistance seen by the current source is 1||1 + 2.5 = 3 Ω , so that the power dissipated in the circuit is *P* = $3f^2$ W.

 Determine the power delivered by the 3 V source, assuming ρ = 2 V/A.
 Solution: The upper node is at 5 V with respect to the lowest node, the middle node is at 3 V. hence, *I_x* = 0.5 A and the current in the 6 Ω resistor is also 0.5 A.
 The current supplied by the 3 V source

is $(3 - 0.5\rho)/2$ and the power delivered by the source is $P = 1.5(3 - 0.5\rho) = 4.5 - 0.75\rho$ W.

Î

10 A

6. Determine the power absorbed or delivered by the dependent source assuming $R = 1 \Omega$.

Solution: The current in the 2 Ω resistor is $2I_x$ flowing downwards. From KVL in the mesh on the left, $10 = 4I_x + 2$, or $I_x = 2$ A. The voltage rise V_x across the dependent source is given by: $V_x - RI_x = 5$, or $V_x = 2R$

 $\mathcal{L}^{1\Omega}_{\mathcal{L}}$

2Ω

1Ω

0.5 Ω

.5 Ω

5 V

3 V

Ω

1ΩŞ

0.5 Ω^L

 \sim

2Ω

 $1\Omega \gtrsim$

0.5 Ω^L

 $4\Omega \lesssim |I_x|$

 $\geq 6 \Omega$

γ 2Ω

2Ω

10 Ω

Z

3Ω

 $N_{1\Omega}$

3Ω

0.5 Ω

+ 5; The power *P* delivered by the source is $P = 2(2 \times R + 5)$.

16. Determine V_0 .

Solution: The 2*V_x* source is replaced by a 10 A source. The current in the 2 Ω resistor is *I_x*. The current in the dependent source is 5 – 2*I_x*, so that the current in the 1 Ω resistor is 15 – *I_x*. From KVL around the mesh abcd, 2*I_x* + 15 – *I_x* = 4*I_x*, which gives *I_x* = 5 A. It follows that *V*₀ = 15 – *I_x* = 10 V.

Problem 1

Find the equivalent resistance between B and E.

- A) 15.11Ω
- B) 16Ω
- C) 8.33Ω
- D) 13.61Ω
- E) None of the above

Problem 2

Find V_0 .

- A) 12V
- B) 7.5V
- C) -12V
- D) -7.5V
- E) None of the above